
JOURNAL OF COMPUTATIONAL PHYSICS 48, 168-181 (1982) 

Implicit Boundary Conditions for the Solution of the 
Parabolized Navier-Stokes Equations for Supersonic Flows* 

M. BARNETT AND R. T. DAVIS 

University of Cincinnati, Cincinnati, Ohio 45221 

AND 

J. V. RAKICH 

NASA Ames Research Center, Moffett Field, California 94035 

Received January 7, 1982 

A fully implicit set of boundary conditions is developed for the solution of the parabolized 
Navier-Stokes equations for supersonic flow in two dimensions. Shock fitting is employed at 
the shock and the body has no-slip and specified temperature conditions. A specified heat 
transfer condition at the wall can be handled in a similar manner. In addition, the shock 
location is advanced in space in a fully implicit manner by utilizing the Rankine-Hugoniot 
conditions along with global conservation of mass. 

In [l] a parabolic form of the Navier-Stokes equations for supersonic 
compressible flow is solved using the Beam-Warming factored implicit algorithm [2]. 
External flows over bodies at angle of attack were calculated for the domain bounded 
by the body surface and the enveloping shock wave. In that work, and in most other 
works of a similar nature, the shock boundary conditions (the Rankine-Hugoniot 
jump conditions) are applied in an explicit manner. While adequate for small 
marching steps (within the CFL condition at the shock), the explicit method has a 
stability-imposed step size limitation. It is advantageous from the standpoint of 
computational efficiency to have fully implicit boundary conditions at both the shock 
and the body in order to remove this stability restriction on step size and allow the 
solution over a given domain to be obtained with less computational effort. 

The earlier studies of Srivastava et al. [3] and Lubard and Helliwell [ 41 are 
examples of viscous shock layer calculations utilizing the Rankine-Hugoniot 
relations at the shock. The study of Srivastava et al. utilized a relaxation technique to 
obtain the overall solution and iterate on the shock shape. Lubard and Helliwell’s 
study utilized space marching with iteration at each streamwise station. The solution 
scheme developed in the present study requires no iteration. 
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Although the problem is viscous, the shock boundary condition can, for most 
applications, be treated in an inviscid manner, as viscous effects are mainly of interest 
near the solid boundary where a boundary layer exists. This implies that the 
Rankine-Hugoniot relations may be employed at the shock since the flow there is 
inviscid. 

In the present study the equations are solved in block tridiagonal form by a matrix 
inverter tailored to solve four second-order equations. The set of equations which is 
solved here consists of two first-order and two second-order equations. To achieve 
compatibility with the inversion scheme, an appropriate finite difference scheme must 
be applied to the inviscid type equations at the boundaries. This situation is 
illustrated through a simple model problem. The use at the boundaries of a difference 
scheme such as that developed here removes what may be the source of oscillations 
in many numerical solution techniques. In the present parabolized Navier-Stokes 
solver, smooth solutions are obtained without the use of numerical smoothing 
schemes for flows without imbedded discontinuities. 

GOVERNING EQUATIONS AND THE SOLUTION SCHEME 

The system of equations which is solved in this study is a parabolic form of the 
Navier-Stokes equations. The gas considered is laminar, perfect, and compressible. 

The development of the basic solution scheme and the transformation from the 
physical to the computational plane follows much the same line of reasoning as was 
employed in [ 11. 

Parabolization of the full Navier-Stokes equations is accomplished by assuming 
steady flow and neglecting streamwise diffusion in comparison to diffusion normal to 
the body surface. With these approximations, the governing equations can be written 
in nondimensional form as 

aF aG ac,. 
ag+all= a?l (1) 

These equations are in strong conservation form in the transform (E, r) plane where 

I== y,F, (Ia) 

G= -y,F+ G, (2b) 

C,=-y,F,.+G,, PC) 

with 
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G= G= 

F, = 3 

(2e) 

(2f) 

The continuity, x momentum, y momentum, and energy equations are represented in 
each vector. 

The above equations are written in the present case for the coordinate transfor- 
mation defined by 

x = c, Y(k rt> = Yb(O + s(r) 40 

where s(q) is the stretching function employed to cluster mesh points near the wall 
for proper boundary layer resolution and S(c) is the shock standoff distance measured 
from body to shock along constant r. The corresponding Jacobian of the transfor- 
mation is given by 

J= l/y, = vy. (4) 

The r7 coordinate is given by 

v=(j- 1)4 

with r~ = 0 at the shock and v = 1 at the body. The index in the r direction is denoted 
by “I”’ so that 

t=t,,+iAt (5b) 

with &, being the location of the initial data plane. 
Typical physical and transformed planes and their nomenclature are given in Figs. 

la and b. 
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FIG. 1. (a) Typical physical plane geometry and notation; (b) typical computational plane. 

The elements of F, G, F,, and G, can be written in terms of the elements of Q and 
their derivatives, where P 

Q= ;I [ 1 pet (64 

and 

fj = Q/J. (6b) 

In the present formulation, the q momentum equation is assumed inviscid; this is a 
consistent assumption with regard to the order of magnitude of the terms already 
neglected as long as the body slope is small. The more appropriate assumption would 
be that the momentum equation for the direction normal to the body surface is 
inviscid. 

The streamwise pressure gradient term is treated in a manner similar to that of [ 11 
in order to prevent the appearance of departure solutions. 

The development of the implicit finite difference scheme and appropriate 
linearization are discussed in detail in [5]. The finite difference scheme in incremental 
variable form is given by 

where d’z = zi+‘ - zi along 17 = const. Equation (7) is first-order accurate in <. Local 
linearization applied to (7) results in 

Discretization of Eq. (8) is performed later, after the boundary conditions have been 
developed. 
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DEVELOPMENT OF THE BOUNDARY CONDITIONS 

Equation (8) describes a sixth-order set of equations in the r direction, two first- 
order (continuity and q momentum), and two second-order (< momentum and energy) 
equations. Hence six boundary conditions are required and they must be distributed 
between the shock boundary and wall boundary in an appropriate manner. For the 
present purposes, three boundary conditions are applied at each boundary. 

Shock Boundary 

The physical unknowns at the shock are the incremental variables given by 

AQ, = 

which can be rewritten, utilizing the shock jump relations of [6], in the form 

r v 
AP, = CAP,, 

(9) 

(10) 

where c,-c, are obtained by locally linearizing about the shock slope and 
corresponding values of the flow variables at the previous march station. Hence the 
cI’s are all known. They are given by 

cl = I(Y+ lPsin* 4Ps[l - PAY- 1)/b+ 111, 

C2=C,Us--Psr 

c,=p,[cotB-[(yf 1)/4sin”Bcos8](1-u,)]+c,v,, 

c, = l/(y - 1) + CzU, + cj v, - c, f(u’ + v*&. 

(114 

(1 lb) 

(llc) 

(114 

The jump conditions providing the above relationships are derived from conservation 
of mass, momentum, and energy at the shock. Through linearization they serve to 
reduce the four unknowns at the shock to one unknown parameter, Ap,, hence 
providing three boundary conditions. The linearization performed here is consistent 
with the basic solution method, Eq. (8). 

Because the strongly conservative form of the governing equations is used, an 
expression for Ai0 is required, where 

a= Q/J and die = (A’Q/J) - &4’J/J’). (12) 



PARABOLIZED NAVIER-STOKES EQUATIONS 173 

In order to have a fully implicit method, the term diJ in Eq. (12) must be evaluated 
in terms of the solution vector dia. This is accomplished in the following manner: 
Based on the definitions of the Jacobian J and y(<, II), 

J = l/&r> s(v). (134 

Therefore, since AJ is taken along constant v, it follows that 

A’J/J’= -Aid/& (13b) 

An implicit means for finding A’s can be developed through the principle of global 
mass conservation, For this purpose the continuity equation is utilized in the form of 
Eq. (7). Thus, 

A’f+ A$!$= -A$$ (14) 

For the continuity equation, the appropriate variables are 

f= y,pu = pu, 

c = -Y,PU + PU = -(Y,/Y,) PU + WY,) PU* 

Pa> 

(15b) 

Equation (14) is next discretized across a box centered at i + $, j - 4 to obtain 

$(A’fj + A’&,) + (Ac/Aq)(Aigj - Aiejp ,) = -(A</Aq)(g: -$ ,). (164 

Equation (16a) is now summed from shock to body, which is effectively trapezoidal 
rule integration, giving 

where j = NJ at the body. This is the appropriate integration for the present scheme. 
Performing the indicated summation and imposing the no-slip condition at the body 
results in 

;(A’J;, + 2Aif2 + ... + 2A’j;,,p ,) - (dc/Ar,~) A’& = (At/Aq) $, . (17) 

The first term on the left-hand side of Eq. (17) is -A’y,, the change in shock 
position between i and i + 1, as next shown. Integrating the mass flux through the 
inflow and outflow planes of two subsequent < stations and setting the difference 
equal to the amount of mass admitted through the shock between those two stations 
(if no mass is injected at the body) leads to 

A’y, = - 1’ A’@uy,) dv. (18) 
-0 

58’!48/2-2 
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The right-hand side of Eq. (18) is the negative of the first term on the left-hand side 
of Eq. (17), giving 

A’y, = - (A</A?f)(A’& + g:>. (19) 

Now since 

it follows that 

A’6 = A’y, - A’y,. (2Ob) 

Equation (19) is then substituted into Eq. (20b) giving us an expression for A’6 in 
terms of the prescribed A’y,, known terms, and the unknown A’g, of continuity. 
Using this expression for A’6 together with Eq. (10) in Eq. (12) gives us the desired 
expression for A’&, in terms of one unknown parameter, A’p,. Performing the above 
described manipulations and rearranging terms to solve for Ai@, we can write in 
compact notation 

~0, = S(A’~,/J~) + 7;, (21) 

where .? and T are easily obtained. 
Before proceeding to application of the boundary conditions at the shock using the 

finite difference scheme, we next turn to the body boundary conditions. 

Wall Boundary 

At the body the no-slip conditions (u = u = 0) are applied and the wall temperature 
is specified. This provides three boundary conditions. 

We can write 

Since at the wall e = e,, the equation of state yields 

@db = ewPby 

thus 

A&‘,), = %dP, 3 

where e, is a constant given by 

(22) 

CW 

Pb) 

(234 e,= T,/y(y- l>M&. 
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Therefore we can write 

(24) 

We wish now to consider the form of deb. According to Eq. (12) we can write 

AP = @p/J) - MJ/J), (25a) 

AK, = (Ape,/J) - ~,(AJ/.J). Pb) 

Use of Eqs. (23a) and (23b) permits us to write 

A@e,), = e,A%. (26) 

Finally we can write at the wall 

4, . (27) 

As at the shock, one unknown parameter remains at the wall, A&. 

DEVELOPMENT OF THE BOUNDARY POINT DIFFERENCE SCHEME 

The boundary conditions and use of the continuity equation has allowed us to 
express the eight unknowns at the shock and wall boundaries in terms of two 
unknowns, dip, and A’&,, respectively. With application of a suitable finite difference 
scheme at the boundaries, the system of equations can be cast into block tridiagonal 
form, which results in a set of equations that is relatively easy to solve with existing 
methods, see 171, for example. We intend to show that there exists one particularly 
suitable finite difference scheme to use at the boundaries. Further, if the boundary 
point difference scheme can be developed directly from the interior point difference 
scheme, then the finite differencing will be completely compatible over the entire 
solution field. It will be demonstrated that incompatibility of the boundary point 
differencing with the interior point differencing can lead to oscillatory solutions. 

Model Problem 

A simple model problem is used to illustrate the above claims. It is desired to 
numerically integrate the equation 

df/dy = 71 cos ny, f (0) = 0, (28) 

over the interval 0 < y < 1. 
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One might discretize Eq. (28) as 

(.h + 1 --fi)ldY = (n/2)(cos Wi + L + cos ?Yi>* (294 

With a boundary condition on f at i = 1 (f, = F), the solution can be obtained at all 
points by stepping Eq. (29a) out from the boundary. If Eq. (29a) is written across 
i - i by decrementing i by one and these two expressions are added together, one 
obtains the central difference form for constant dy 

(fi+ 1 -fi- 1)/2dy = (7Z/4)(Cos 7cy)+ 1 + 2 COS XYyi + COS XYi- 1)’ (29b) 

With Eq. (29b) the system of equations can be cast into tridiagonal form and solved 
by conventional methods using a tridiagonal inverter. This is how the model problem 
is solved in this study. 

An alternative method of solution is the following: By stepping Eq. (29b) from 
i = 1, the solution can be obtained at all of the odd numbered mesh points. To obtain 
the solution at the even numbered mesh points, a difference expression relating f at i 
and i + 1 must be employed. The obvious choice is Eq. (29a) which can be employed 
once, and then, with the solution at one even numbered mesh point, Eq. (29b) can be 
marched backwards to find the solution at all remaining even numbered mesh points. 
This technique will give precisely the same solution as when Eq. (29a) is used for all 
points or when system (29b) is solved in tridiagonal form, as one would solve a 
second-order equation using (29a) as an outer boundary condition. Equation (29a) is 
not the only possible finite difference expression which can be used as an outer 
boundary condition or to transfer the solution to an even numbered mesh point when 
using Eq. (29b). It is, however, the only compatible difference expression for this task, 
having been used to derive the interior point difference scheme. This model problem 
was solved for this study using a tridiagonal inverter and the percent error in the 
solution is plotted for the compatible and an incompatible boundary point difference 
expression in which the derivative is written as a three-point backward difference at 
the upper boundary. Identical results are obtained using the odd and even point 
marching scheme mentioned above. The incompatible expression was not chosen at 
random. It has formally the same order of accuracy at the boundary point as the 
interior point difference scheme for u’fldy has at those points. The results (Fig. 2) 
show that the incompatible boundary point differencing yields an oscillatory solution 
which reproduces the compatible differencing results only at the odd numbered mesh 
points. The solution has not been properly transferred to the even numbered mesh 
points. 

If the solution method for this model problem utilizing Eqs. (29b) and (29a) is 
written out in matrix form, it is found to be a tridiagonal system with all zero 
elements on the main diagonal except at the upper boundary where Eq. (29a) is 
applied. This system is clearly lacking diagonal dominance, yet we note that this 
poses no problem provided the boundary point differencing is treated properly. 

The situation can be summarized as follows: A first-order equation is integrated 
using a two-point central difference written across three mesh points. In order to 
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FIG. 2. Model problem: present error versus 4’ at interior points. 

correctly recouple the solution points, a “numerical boundary condition” is required 
which we shall call a “connection condition.” Hence the first-order equation with a 
two-point central difference written across three mesh points requires one boundary 
condition and one connection condition. This is exactly analogous to the parabolic 
Navier-Stokes problem, which we recall was formulated with two inviscid equations. 

We now proceed to develop the fipite difference scheme for the solution of Eq. (8). 
Only the inviscid form of that equation is considered because the connection 
conditions are required only for the inviscid (first-order) equations. 

Equation (8) is discretized across the box centered’ at i + 4, j + f for an inviscid 
equation as 

As for the model problem, decrement j by one to give the expression for the box 
centered at i + f, j - i, then add this and Eq. (30) to give 

This is the interior point difference scheme for the inviscid terms in all of the 
conservation equations. Note that as for the model problem, the q derivatives are 
two-point central differences written across three mesh points. We should thus expect 
the same uncoupling of adjacent solution points in the inviscid equations as was 
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observed in the model problem. This also occurs in the viscous equations in inviscid 
regions where the viscous terms die out. Hence we choose to employ Eq. (30) at the 
two boundaries on the inviscid equations, one at each boundary. This will allow us to 
apply the correct connection conditions while at the same time providing a 
relationship between the one remaining unknown at each boundary and the solution 
vector at the adjacent mesh point. Thus the boundary points are eliminated from the 
inversion of the system of equations and the desired block tridiagonal form is 
achieved. Note that the present algorithm could be used for computing totally 
inviscid flows by providing two more required connection conditions. 

The application of the connection conditions for the viscous problem is detailed in 
the next section. 

Application of Connection Conditions 

The continuity equation written in the form of Eq. (30) is utilized at the shock 
boundary. Using compact notation the equation is rewritten as 

AA’Q, + BA’Q, = R. (324 

Noting that A(?, = AQ, , Eq. (2 1) is substituted into Eq. (32a) and Ap,/J solved for to 
yield 

A’p,/J’ = (AS)-‘[R -AT- BA’&], Wb) 

expressing Ap,/J in terms of the unknown vector do2 and known quantities. Next 
substituting Eq. (32b) into Eq. (21) gives A& in terms of Ae, and known quantities. 
The final step is to substitute for A(?, in terms of A@, in the overall finite difference 
scheme written at j = 2 for all of the governing equations. This redefines the coef- 
ficient matrices and right-hand side term for j = 2 and eliminates the shock point 
from the direct inversion of the system of equations. Once Ae, is known, AC, is 
obtained from the expression relating the two. 

The procedure at the body is almost identical to that at the shock; therefore it will 
not be detailed here. The main difference is that at the body the connection condition 
is made on the q momentum equation. 

The boundary conditions in conjunction with the connection conditions have been 
developed in this study in a completely implicit manner. One other point must be 
discussed, namely, the method for advancing the shock shape in a fully implicit 
manner. 

IMPLICIT ADVANCE OF THE SHOCK SHAPE 

Some parabolized Navier-Stokes schemes which employ shock fitting have in the 
past not used implicit means to advance the shock shape, even though the rest of the 
scheme may have been implicit. In [l] the authors note that the use of Euler explicit 
integration to march the shock shape downstream leads to restrictions on the 
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maximum allowable streamwise step size. It is found that an implicit method for 
advancing the shock can be developed straightforwardly based on global conservation 
of mass. 

In [3], the shock shape is solved for implicitly by making the shock standoff one of 
the unknowns solved for when the equations are inverted. This is more costly than the 
present approach in terms of the computational effort required. 

The integration indicated in Eq. (18) is all that is needed to implicitly advance the 
shock. Once the equations have been inverted at station i + 1, the vector Ai0 is 
known, hence A’@uy,) is available. The integration of Eq. (18) is performed using the 
trapezoidal rule to find A’y,. Then A’6 follows from Eq. (20b) with the prescribed 
Aiy,, . Finally 

6 itI =Ji+~id, (33) 

Once fY+ i is known, J” is computed and 0” ’ is decoded to give Q’I ‘, the 
physical variables. 

RESULTS 

In this study a fully implicit set of boundary conditions for the parabolized 
Navier-Stokes equations in strong conservation form has been developed. Figure 3 
shows the surface pressure for the 10% parabolic arc airfoil at the conditions solved 
for in an earlier numerical study by Schiff and Steger [8]. Agreement is good between 
the present code and their results. All profiles were found to be free of oscillations 
except for very small magnitude oscillations near the shock. No smoothing of any 
sort was applied in the present scheme. 

The three-dimensional solution scheme of [ 1 ] was reduced to two dimensions and a 
step size study performed to compare the effect of the difference in the boundary 
conditions between the two schemes. The earlier scheme was found to be limited in 
step size to a condition which corresponds approximately to a CFL number of one at 

1.60 , 10% Parabolic Arc Airfotl 

M,2 
R. = 1 rnlll,O” 

_ Schlff and Siegerl6l 

-Present Results 

0.60 !  ,rAirfoif Shape 

I , r / --IT----, -;-, 
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 1.00 

x 

FIG. 3. Ten percent parabolic arc airfoil. p,/p, versus x. 
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FIG. 4. Wall shear versus x for various CFL numbers for flat plate flow. 

the shock. The present scheme permits shock CFL numbers up to approximately 
seven, although the accuracy of the results declines as expected at the higher CFL 
numbers. This is illustrated in Fig. 4 where wall shear profiles are plotted for various 
shock CFL numbers and are compared to the results of self-similar compressible 
boundary layer theory. 

CONCLUSIONS 

The importance of a carefully considered choice of the boundary point difference 
scheme has been indicated through a simple model problem. An implicit method has 
been devised for advancing the shock based on the principle of global mass conser- 
vation. It was found that if the present scheme is used with the shock advanced by 
Euler explicit integration, the maximum step size is again curtailed to a shock CFL 
number of approximately one, independent of the fact that the boundary conditions 
are otherwise fully implicit. 

Though the present analysis is for two-dimensional flow, extension of the boundary 
conditions to three dimensions should be possible using the same principles. 

c,~c,,c,~c4 

e 
F, G 

i 
.i 
J 
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u 

APPENDIX: NOMENCLATURE 

constants arising from linearized shock relations 
specific internal energy 
vectors in governing equations 
index in streamwise (0 direction 
index in stream-normal (II) direction 
Jacobian of the coordinate transformation 
Mach number 
pressure 
vector of flow variables 
velocity component in x-direction 
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2’ 

X,Y 

6 
(2 ‘I 
P 

Subscripts 

b 

t 
V 
W 

X,Y 
(5 rl 
co 

velocity component in y-direction 
Cartesian coordinates, physical plane 
ratio of specific heats, y = c,/E,: 
shock standoff distance 
coordinates in transform plane 
density 

body 
shock 
total 
viscous 
wall 
partial derivatives with respect to x and y, respectively 
partial derivatives with respect to < and q, respectively 
freestream value 
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